3.296 \(\int \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\)

Optimal. Leaf size=74 \[ \frac {\sqrt {a-b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{f}-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )}{f} \]

[Out]

-arctanh((a+b*tan(f*x+e)^2)^(1/2)/a^(1/2))*a^(1/2)/f+arctanh((a+b*tan(f*x+e)^2)^(1/2)/(a-b)^(1/2))*(a-b)^(1/2)
/f

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3670, 446, 83, 63, 208} \[ \frac {\sqrt {a-b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{f}-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-((Sqrt[a]*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]])/f) + (Sqrt[a - b]*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/S
qrt[a - b]])/f

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 83

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[(b*e - a*f)/(b*c
 - a*d), Int[(e + f*x)^(p - 1)/(a + b*x), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[(e + f*x)^(p - 1)/(c + d*
x), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[0, p, 1]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a+b x^2}}{x \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a+b x}}{x (1+x)} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=\frac {a \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}-\frac {(a-b) \operatorname {Subst}\left (\int \frac {1}{(1+x) \sqrt {a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=\frac {a \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tan ^2(e+f x)}\right )}{b f}-\frac {(a-b) \operatorname {Subst}\left (\int \frac {1}{1-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tan ^2(e+f x)}\right )}{b f}\\ &=-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )}{f}+\frac {\sqrt {a-b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 72, normalized size = 0.97 \[ \frac {\sqrt {a-b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )-\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

(-(Sqrt[a]*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]]) + Sqrt[a - b]*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[
a - b]])/f

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 382, normalized size = 5.16 \[ \left [\frac {\sqrt {a - b} \log \left (\frac {b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} + 2 \, a - b}{\tan \left (f x + e\right )^{2} + 1}\right ) + \sqrt {a} \log \left (\frac {b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a} + 2 \, a}{\tan \left (f x + e\right )^{2}}\right )}{2 \, f}, \frac {2 \, \sqrt {-a + b} \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b}}{a - b}\right ) + \sqrt {a} \log \left (\frac {b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a} + 2 \, a}{\tan \left (f x + e\right )^{2}}\right )}{2 \, f}, \frac {2 \, \sqrt {-a} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a}}{a}\right ) + \sqrt {a - b} \log \left (\frac {b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} + 2 \, a - b}{\tan \left (f x + e\right )^{2} + 1}\right )}{2 \, f}, \frac {\sqrt {-a} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a}}{a}\right ) + \sqrt {-a + b} \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b}}{a - b}\right )}{f}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a - b)*log((b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b) + 2*a - b)/(tan(f*x + e)^2
+ 1)) + sqrt(a)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2))/f, 1/2*(2
*sqrt(-a + b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)/(a - b)) + sqrt(a)*log((b*tan(f*x + e)^2 - 2*sqr
t(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2))/f, 1/2*(2*sqrt(-a)*arctan(sqrt(b*tan(f*x + e)^2 + a)*s
qrt(-a)/a) + sqrt(a - b)*log((b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b) + 2*a - b)/(tan(f*x
+ e)^2 + 1)))/f, (sqrt(-a)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a)/a) + sqrt(-a + b)*arctan(-sqrt(b*tan(f*x
 + e)^2 + a)*sqrt(-a + b)/(a - b)))/f]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check si
gn: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check si
gn: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check si
gn: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/
x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)2/f*(-1/2*a*atan((
-sin(f*x+exp(1))^2*sqrt(a-b)+sqrt(a*sin(f*x+exp(1))^4-b*sin(f*x+exp(1))^4-2*a*sin(f*x+exp(1))^2+b*sin(f*x+exp(
1))^2+a))/sqrt(-a))/sqrt(-a)+sqrt(a-b)*(-a+b)*ln(abs((2*a-2*b)*(-sin(f*x+exp(1))^2*sqrt(a-b)+sqrt(a*sin(f*x+ex
p(1))^4-b*sin(f*x+exp(1))^4-2*a*sin(f*x+exp(1))^2+b*sin(f*x+exp(1))^2+a))+sqrt(a-b)*(2*a-b)))/(4*a-4*b))*sign(
sin(f*x+exp(1))^2-1)

________________________________________________________________________________________

maple [B]  time = 1.70, size = 615, normalized size = 8.31 \[ -\frac {\sqrt {4}\, \sqrt {\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\cos \left (f x +e \right )^{2}}}\, \cos \left (f x +e \right ) \left (-1+\cos \left (f x +e \right )\right ) \left (\ln \left (-\frac {2 \left (-1+\cos \left (f x +e \right )\right ) \left (\sqrt {a}\, \cos \left (f x +e \right ) \sqrt {\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\left (1+\cos \left (f x +e \right )\right )^{2}}}+\sqrt {\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a}-a \cos \left (f x +e \right )+b \cos \left (f x +e \right )+b \right )}{\sin \left (f x +e \right )^{2} \sqrt {a}}\right ) \sqrt {a}\, \sqrt {a -b}-\sqrt {a}\, \ln \left (-\frac {4 \left (\sqrt {a}\, \cos \left (f x +e \right ) \sqrt {\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\left (1+\cos \left (f x +e \right )\right )^{2}}}+\sqrt {\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a}+a \cos \left (f x +e \right )-b \cos \left (f x +e \right )+b \right )}{-1+\cos \left (f x +e \right )}\right ) \sqrt {a -b}+2 \ln \left (4 \sqrt {\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right ) \sqrt {a -b}+4 \sqrt {a -b}\, \sqrt {\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\left (1+\cos \left (f x +e \right )\right )^{2}}}+4 a \cos \left (f x +e \right )-4 b \cos \left (f x +e \right )\right ) a -2 \ln \left (4 \sqrt {\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right ) \sqrt {a -b}+4 \sqrt {a -b}\, \sqrt {\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\left (1+\cos \left (f x +e \right )\right )^{2}}}+4 a \cos \left (f x +e \right )-4 b \cos \left (f x +e \right )\right ) b \right )}{4 f \sin \left (f x +e \right )^{2} \sqrt {\frac {a \left (\cos ^{2}\left (f x +e \right )\right )-\left (\cos ^{2}\left (f x +e \right )\right ) b +b}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a -b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x)

[Out]

-1/4/f*4^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/cos(f*x+e)^2)^(1/2)*cos(f*x+e)*(-1+cos(f*x+e))*(ln(-2*(-1+co
s(f*x+e))*(((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*a^(1/2)+((a*cos(f*x+e)^2-cos(
f*x+e)^2*b+b)/(1+cos(f*x+e))^2)^(1/2)*a^(1/2)-a*cos(f*x+e)+b*cos(f*x+e)+b)/sin(f*x+e)^2/a^(1/2))*a^(1/2)*(a-b)
^(1/2)-a^(1/2)*ln(-4*(((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*a^(1/2)+((a*cos(f*
x+e)^2-cos(f*x+e)^2*b+b)/(1+cos(f*x+e))^2)^(1/2)*a^(1/2)+a*cos(f*x+e)-b*cos(f*x+e)+b)/(-1+cos(f*x+e)))*(a-b)^(
1/2)+2*ln(4*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a-b)^(1/2)+4*(a-b)^(1/2)*((
a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(1+cos(f*x+e))^2)^(1/2)+4*a*cos(f*x+e)-4*b*cos(f*x+e))*a-2*ln(4*((a*cos(f*x+e
)^2-cos(f*x+e)^2*b+b)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)*(a-b)^(1/2)+4*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)
^2*b+b)/(1+cos(f*x+e))^2)^(1/2)+4*a*cos(f*x+e)-4*b*cos(f*x+e))*b)/sin(f*x+e)^2/((a*cos(f*x+e)^2-cos(f*x+e)^2*b
+b)/(1+cos(f*x+e))^2)^(1/2)/(a-b)^(1/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is b-a positive or negative?

________________________________________________________________________________________

mupad [B]  time = 0.29, size = 83, normalized size = 1.12 \[ -\frac {\sqrt {a}\,\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{\sqrt {a}}\right )}{f}-\frac {\mathrm {atanh}\left (\frac {a\,b^3\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}\,\sqrt {a-b}}{a\,b^4-a^2\,b^3}\right )\,\sqrt {a-b}}{f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e + f*x)*(a + b*tan(e + f*x)^2)^(1/2),x)

[Out]

- (a^(1/2)*atanh((a + b*tan(e + f*x)^2)^(1/2)/a^(1/2)))/f - (atanh((a*b^3*(a + b*tan(e + f*x)^2)^(1/2)*(a - b)
^(1/2))/(a*b^4 - a^2*b^3))*(a - b)^(1/2))/f

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \cot {\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)*(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(e + f*x)**2)*cot(e + f*x), x)

________________________________________________________________________________________